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I. Introduction

The value of medical innovations partly relies on the incentives they gen-
erate. Across most health conditions, medical innovation is enormously
valuable (Newhouse 1992; Cutler and McClellan 2001; Murphy and
Topel 2006; Hall and Jones 2007; Dranove et al. 2022). However, an im-
portant contribution of economics has been to identify instances in
which innovation-generated incentives shift behavior that aligns with,
or works against, their direct social welfare implications. For example,
Papageorge (2016) shows that a significant benefit of HIV treatments
(highly active antiretroviral therapy [HAART]) was to raise productivity
and increase labor supply. Conversely, Kaestner, Darden, and Lakdawalla
(2014) present evidence of technological substitution away from diet
and exercise when statin medications were introduced to lower choles-
terol. Medical innovation may also shift incentives (and subsequent
behaviors and outcomes) for individuals who are not their primary ben-
eficiaries. We refer to such instances as innovation-induced externalities. Es-
pecially in cases where new innovations are extremely costly relative to ex-
isting technology, valuing innovation-induced externalities may influence
payer coverage decisions and research anddevelopment investment choices
(Fendrick et al. 1996; Philipson 2000; Chernew and Newhouse 2011).
In this paper, we quantify the innovation-induced externalities associ-

ated with the recent introduction of a breakthrough medical treatment
that dramatically improved health outcomes. Specifically, in December
2013, the Food and Drug Administration approved sofosbuvir, a direct-
acting antiviral (DAA), for the treatment of chronic hepatitis C (HCV).
Prior to the availability of DAAs, HCV was the leading cause of infectious-
disease-related death in the United States and accounted for nearly half
of all liver transplant waiting list registrations (Powell, Alpert, and Pacula
2019). However, DAA therapy, which achieves sustained viral clearance
rates in over 90% of HCV patients, mechanically reduces liver demand
to the extent that, for many, therapy obviates the need for a transplant.
We conceive of those with end-stage liver disease (ESLD) resulting from con-
ditions other than HCV (e.g., alcohol-associated liver disease, nonalcoholic
steatohepatitis) to be external to the market for HCV pharmaceuticals,
and we quantify the innovation-induced externalities to these individuals
resulting from DAA-induced changes in the demand for livers.
We study the universe of patients wait-listed for a liver transplant be-

tween 2005 and 2019 from the Scientific Registry of Transplant Recipients

Recipients (SRTR). The interpretation and reporting of these data are the responsibility
of the author(s) and in no way should be seen as an official policy of, or interpretation
by, the SRTR or the United States government. More information on how to obtain the
SRTR Standard Analysis Files can be found at the following website: https://www.srtr
.org/requesting-srtr-data/data-requests/.
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(SRTR). The raw data highlight several clear implications of DAA avail-
ability. First, between 2014 and 2019, transplants to HCV1 individuals
declined sharply, while transplants to HCV2 individuals increased. As a
result, the annual percentage of HCV2 waiting list registrants who re-
ceived a transplant increased from 33% in 2014 to 65% by 2019. Second,
mirroring the transplant dynamics, during this period, the data indicate
a sharp reduction in the number of HCV1 individuals and an increase in
the number of HCV2 individuals added to the liver transplant waiting
list. Third, following DAA availability, both HCV1 and HCV2 patients re-
ceiving a transplant were healthier at the time of transplant, as measured
by theModel for End-Stage Liver Disease (MELD) score. Finally, the data
indicate an overall increase in liver transplants from 2014 through 2019
(see fig. 1). While we focus on demand-side responses to DAA availabil-
ity, this increase in liver transplants can only be explained by an increase
in the supply of organs available for transplant, and we examine several
potential explanations for this supply increase, including waiting list reg-
istrants’ increased willingness to accept HCV1 organs in the post-DAA
era. The raw data suggest considerable welfare improvements to both
HCV1 and HCV2 individuals resulting from the availability of DAAs:
Many HCV1 patients were cured of liver disease, and both marginal and
inframarginal HCV2 patients gained access to livers.
While trends in the raw data imply significant innovation-induced ex-

ternalities to HCV2 individuals with ESLD, our main parameter of inter-
est is the number of new transplants to HCV2 individuals resulting from
DAA availability. That is, the relevant counterfactual is the trend in HCV2

transplants in the absence of DAAs. Changes in descriptive trends may be
due to DAAs, but they may also be due to concurrent shocks, such as the
rise of fentanyl, which significantly increased HCV transmission, opioid
overdose deaths, and the supply of transplantable organs (Powell, Alpert,
and Pacula 2019;Maclean et al. 2021; Dickert-Conlin et al. 2024), or by the
full implementation of the Affordable Care Act, which expanded health
insurance coverage and increased transplant wait-listing (Lemont 2023).
To address these concurrent shocks, our identification strategy compares
trends in HCV2 liver transplants and wait-listing behaviors before and af-
ter the introduction of DAAs to similar trends for kidneys. The basis for
this approach is that a comparison between liver and kidney behaviors
and outcomes will net out common shocks to the demand and supply
of organs for transplant, leaving changes induced by DAAs. Threats to
the validity of our research design primarily involve spillovers from DAA
availability to kidney waiting list registrants, but we show extensive evi-
dence that spillover effects are negligible in our setting.
Using a traditional difference-in-differences (DiD) design, we estimate

a 35.8% average annual increase in HCV2 liver transplants and a 39.1%
decrease in HCV1 liver transplants following the availability of DAAs,
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representing a total of 5,682 additional transplants to HCV2 individuals
with ESLD from 2014 through 2019. We show thatmany newly transplanted
HCV2 individuals would have remained unlisted had they not been in-
duced to join by the reduction in demand from HCV1 individuals; our
estimates imply an average annual increase in HCV2 waiting list registra-
tions of 37% following the introduction of DAAs. Combined with an es-
timated reduction in HCV1 waiting list registrations of 45%, we conclude
that DAA availability would have eliminated the liver transplant waiting
list had marginal HCV2 patients not been induced to join. Lending fur-
ther credence to our research design, our estimates of the externality ef-
fect of DAAs on HCV2 transplants and waiting list registrations are larger
in areas with higher baseline HCV rates.
Because many HCV1 patients were cured of liver disease, additional

HCV2 transplants did not crowd-out HCV1 transplants, and so these gains
added to the overall welfare benefits of DAAs. Under standard value of life
assumptions, and assuming an additional 10.1 life years per transplant
(Rana et al. 2015), the net value of the additional 5,682 HCV2 transplants
amounts to $1.25 billion per year, or $7.52 billion in total from 2014
through 2019. This calculation also depends on characteristics of the
marginal HCV2 patient to be transplanted. We show that the time from
wait-listing to transplant for HCV2 patients declined by 16% following
the introduction ofDAAs. Indeed, examining transplant rates conditional
on listing, we find that the growth in HCV2 transplants outpaced the
growth in waiting list demand, which suggests more frequent and/or ear-
lier liver offers for HCV2 individuals. Furthermore, interrupted time
series estimates suggest that the average MELD score at transplant
for HCV2 recipients fell (improved) by 3 points (12.8%).1 Both of these
findings suggest our externality estimate represents a lower bound, as
healthier patients will likely live longer after transplant. We also detect a
composition shift in the causes of liver disease amongHCV2 patients join-
ing the waiting list. In our data, the proportion of HCV2 registrants with
alcohol-associated liver disease (ALD) increased following DAAs, which
may affect expected longevity and thus our value estimate. However, this
composition effect does not explain the increase in HCV2 waiting list
registrations; using National Health and Nutrition Examination Survey
(NHANES) data, we show that the prevalence of ALD in the population
was flat from 2014 through 2018. In summary, we conclude that DAAs
represented an innovation-induced externality that equates to roughly
11.5% of the total potential HCV1 therapeutic market as of 2014.
We also conclude that the reallocation of livers from HCV1 to HCV2

individuals resulted largely from an endogenous change in the HCV

1 BecauseMELD score is specific to liver disease, we cannot derive difference-in-differences
estimates of MELD score at transplant relative to kidneys.
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composition of the waiting list. Prior studies suggest that there was consid-
erable room for such endogenous listing, as rates of waiting list referrals
are quite low, even among qualified ESLD candidates.2 Furthermore, prior
work has documented strategic behavior in organ transplant markets
(Zhang 2010; Agarwal et al. 2018, 2021; Sweat 2023). A key finding of these
studies is that organ allocation simulationmodels that ignore strategic be-
havior generate biased predictions. For example, our estimate of the pos-
itive externality toHCV2 liver transplant recipients resulting fromDAAs is
larger than the estimate from an epidemiological simulation model that
did not account for behavioral listing responses ( Jena et al. 2016). Our re-
sults also complement prior studies that have documented a wait-listing
response to organ supply shocks including the opioid epidemic and the
repealing of statemotorcycle helmet laws (Fernandez, Howard, and Stohr
Kroese 2013; Dickert-Conlin, Elder, and Teltser 2019; Dickert-Conlin et al.
2024). However, unlike these studies, our analysis focuses on the implica-
tions of a demand shock (i.e., reduced demand for liver transplant among
HCV1 individuals and increased demand among HCV2 individuals) rather
than a supply shock. This difference is notable in that behavioral re-
sponses to a negative demand shock can provide insight into potential
effects of a broader reduction in the demand for organs if alternative treat-
ments for conditions contributing to organ failure were to be developed
(e.g., improved hypertension control or diabetes treatment reducing de-
mand for kidneys).
Our study contributes to the larger literature on technological innova-

tion by modeling and estimating behavioral responses to treatment inno-
vations (Dow, Philipson, and Sala-i Martin 1999; Peltzman 2011; Baranov,
Bennett, and Kohler 2015) and adds to recent examples of innovation-
induced behavioral responses, including statin medications and diet and
exercise (Kaestner, Darden, and Lakdawalla 2014), HAART therapy and
risky sex (Chan, Hamilton, and Papageorge 2015; Papageorge 2016), can-
cer treatments and labor supply ( Jeon and Pohl 2019), immunization and
disease screening (Moghtaderi and Dor 2021), and immunotherapy and
life insurance (Koijen and Van Nieuwerburgh 2019). Our findings also
contribute to the literature that has examined technological change in
medical and pharmaceutical treatments, its impacts on value, and whether
the surplus generated by that change has primarily been captured by
the innovators or by consumers ( Jena and Philipson 2008; Hult and
Philipson 2023). For example, Hult, Jaffe, and Philipson (2018) found

2 For example, Goldberg et al. (2016) found the 3-year incidence rate of wait listing to
be 15.8% among privately insured ESLD patients who met the clinical guidelines to join
the waiting list and 10.0% among those with Medicaid coverage. Further, conditional on
receiving an evaluation, between 30% and 50% of candidates do not end up joining the
liver transplant waiting list (Bryce et al. 2009, 2010; Jesse et al. 2019).
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that, among the more than 6,000 innovations they studied, 68% of new
technologies had higher quality-adjusted prices than the incumbent tech-
nologies they sought to replace.Dunn, Fernando, andLiebman (2023) re-
ported similar findings and concluded that much of the total surplus gen-
erated by pharmaceutical innovation accrues to innovators rather than
consumers but pointed to DAAs for HCV treatment as a clear exception.
Our results imply that, in addition to the surplus captured by those treated
with DAAs, welfare gains also extended to HCV2 individuals with ESLD—
consumers who were not the direct beneficiaries of the technological in-
novation and whose gains are not considered in current estimates of DAA
cost-effectiveness.
Specialty drugs, like those we study, have been responsible for driving

the largest increases in pharmaceutical spending and have strained the
budgets of public payers (Hernandez et al. 2019; Parasrampuria and
Murphy 2022). Our estimate of the innovation-induced externality of
DAAs to HCV2 individuals changes the benefit-cost ratio from a public-
payer perspective. Valuing externalities may also play an important role
in generating new ideas and innovations (Dranove et al. 2022), where
pharmaceutical revenuemodels havemoved away from relying on “block-
buster” medications and toward higher-cost drugs with smaller patient
populations (Song and Han 2016; van der Gronde, Uyl-de Groot, and
Pieters 2017).
Finally, looking forward, two states in the United States, Louisiana and

Washington, have adopted innovative subscription models to finance
DAA medications for their Medicaid and incarcerated populations, with
policymakers in other states expressing interest in similar arrangements
(Auty et al. 2022). The Biden administration has also recently introduced
the “National Hepatitis C Elimination Program,” which provides signifi-
cant funding for the diagnosis and treatment of HCV (Fleurence and Col-
lins 2023). Our findings suggest that these programs, aimed at expanding
access to DAA therapies, will significantly benefit HCV2 individuals with
ESLD.

II. Background

A. Hepatitis C and Treatment Innovation

HCV is a chronic viral infection that leads to cirrhosis of the liver and its
complications, including hepatocellular carcinoma (Kamal 2008). Ap-
proximately 2.5 million people are living with HCV in the United States,
and prevalence rates have tripled over the past decade, largely as a con-
sequence of the opioid epidemic and increased intravenous drug use
(Zibbell et al. 2018; Powell, Alpert, and Pacula 2019). Traditional treat-
ments for HCV have had limited effectiveness and are associated with
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debilitating side effects (Burstow et al. 2017). However, in December
2013, the Food and Drug Administration (FDA) approved sofosbuvir for
the treatment of HCV. Sofosbuvir is a DAA that inhibits the replication
of HCV’s viral RNA and has shown a high resistance barrier. During the
following year, three new DAAs were approved for HCV treatment, and
since then, treatment with a combination of sofosbuvir (an NS5B protein
inhibitor) and NS5A protein inhibitors has vastly improved sustained vi-
ral response in HCV1 patients (Burstow et al. 2017).
The 2013 FDA approval of the DAA NS5B inhibitor sofosbuvir and the

2016 approval of a sofosbuvir/velpatasvir regimen marked a new era for
HCV treatment (Burstow et al. 2017).With cure rates approaching 100%,
DAAs are now the frontline recommendation for treating HCV. They are
also widely considered to be cost-effective (Chhatwal et al. 2017; He et al.
2017; Dunn, Fernando, and Liebman 2023). However, despite these ben-
efits, the high cost of DAA medications has led to significant barriers to
access (Henry 2018). Though the actual price paid for medications such
as DAAs depends on a variety of factors, the wholesale acquisition cost
(i.e., list price) of a 12-week course of sofosbuvir treatment was $84,000
after its initial approval in 2013 (Rosenthal and Graham 2016). By 2019,
the median price for a course of DAA treatment fell to approximately
$37,000 as competingmedications were introduced. The high cost associ-
atedwithDAA treatment, alongwith the fact thatmany of those livingwith
HCVare unaware of their disease, has led to projections of sustainedHCV
disease prevalence in the era of DAAs (Chhatwal et al. 2016). In fact, de-
spite the introduction of a curative therapy for HCV, US deaths attributed
to the virus in 2018 (3.7 per 100,000) had declined only modestly from
2013 levels (5.3 per 100,000) (U.S. Centers for Disease Control and Pre-
vention 2020).

B. Hepatitis C, Wait-Listing, and Liver Transplant

Between 15% and 30% of those with an HCV infection experience spon-
taneous viral clearance (Kamal 2008). However, for those who cannot
clear the virus on their own, HCV becomes a chronic illness. Delaying
treatment for HCV has serious health consequences (Erman et al.
2020). Left untreated, chronic HCV can lead to cirrhosis and its com-
plications, eventually necessitating liver transplant (Zoulim et al. 2003).
In fact, prior to the availability of DAAs, HCV was the leading cause of
infectious-disease-related deaths in the United States (Powell, Alpert, and
Pacula 2019) and accounted for nearly half of all liver transplant waiting
list registrations.
Joining the liver transplant waiting list requires prospective candidates

to first be referred to a transplant center where they undergo a thorough
medical workup along with an evaluation of financial and psychosocial
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factors, including degree of social support, psychiatric illness, and
whether the candidate uses alcohol, tobacco, or other substances (Wahid,
Rosenblatt, and Brown 2021). While the process from evaluation to listing
is informed by practice guidelines, transplant centers have latitude in how
they evaluate candidates and assess transplant risk, with the center’s trans-
plant team ultimately responsible for waiting list determinations (Martin
et al. 2014). Prior studies have documented low rates of evaluation refer-
rals and wait-listing among qualified ESLD candidates, including Gold-
berg et al. (2016), who reported the 3-year incidence rate of wait-listing
to be 15.8% among privately insured ESLD patients who met the clinical
guidelines to join the waiting list and 10.0% among those with Medicaid
coverage. Of those who are evaluated for the waiting list, between 30%
and 50% of candidates fail to join (Bryce et al. 2009, 2010; Jesse et al.
2019).
Within 3 years of wait-listing, more than 10% of liver transplant candi-

dates will die before receiving a transplant and 20%will be removed from
the waiting list without undergoing transplant—primarily due to their
disease progressing to the extent that they are no longer viable transplant
candidates (Kwong et al. 2020). Nearly 30% of those receiving a liver
transplant will experience graft failure within 5 years. Further complicating
these issues is that untreated HCV leads to universal recurrence of infec-
tion after transplant, potentially resulting in graft loss and necessitating
retransplantation (Ciesek and Wedemeyer 2012). HCV has historically
limited the supply of transplantable livers as HCV1 livers were commonly
discarded (Levitsky et al. 2017). However, since the introduction of DAAs,
there has been a shift toward more frequent transplantation of HCV1 liv-
ers, and patients have shown an increased willingness to accept an HCV1

liver (Axelrod et al. 2018; Kwong et al. 2020).

C. Conceptual Framework

Tomotivate our empirical work, we envision a simple discrete timemodel
of a representative end-stage liver disease patient/physician team.3 Each
period of the model contains two stages. In the second stage, conditional
on being on the liver transplant waiting list, the probability that the pa-
tient receives an offer of a liver for transplant is a function of their health
and the number of waiting list patients ahead of them on the list. Condi-
tional on receiving a liver offer, the patient must decide whether to accept
or refuse the organ for transplant. A patient may refuse an offer of a liver
if they believe that they will receive an offer of a higher quality liver in the
future. In the first stage of a given period, clinically eligible liver patients

3 Agarwal, Hodgson, and Somaini (2020) highlight important agency issues faced by the
patient/physician team, which we abstract from here.
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must decide whether to join the waiting list. Because between 40% and
50%of those referred to transplant evaluation report concern over afford-
ing the costs of travel, visits, and testing (Dageforde et al. 2015; Harding
et al. 2021), waiting list participation is a repeated choice (i.e., each pe-
riod) even if the patient was previously on the list. The model takes the
form of an optimal stopping problem conditional on being wait-listed for
an organ, where the decision to join the waiting list is endogenous. In
this sense, the model aligns with the framework of Howard (2002), who
focuses on the decision to accept an organ offer, and Agarwal et al. (2021),
who develop methods for evaluating alternative mechanisms with re-
spect to efficiency and equity. The common thread in all these models is
that individuals are allowed to endogenously respond to changes in the
environment.
In our case, the change in the environment is a dramatic and curative

innovation for a subset of individuals on the waiting list. DAAs cause both
HCV1 attrition from the waiting list and stem the flow of new HCV1 reg-
istrants to the waiting list because the prevalence of HCV falls in the pop-
ulation. The implications are a shorter waiting list and a list whose com-
position shifts towardHCV2 registrants. For a given supply of organs, liver
transplant offers increase for HCV2 registrants, and, as a direct result, the
value of wait-listing increases for marginal HCV2 ESLD patients. The
model clarifies the mechanisms by which DAAs will affect the welfare
of HCV1 and HCV2 individuals with liver disease. It highlights that
changes in levels of equilibrium transplants will depend on the endoge-
nous listing behavior of each group. This suggests that regressions of
equilibrium transplant levels, which depend on both transplant accep-
tance probabilities and waiting list enrollment decisions, may generate
different results than regressions of equilibrium transplant rates, which
are conditional on waiting list size. Furthermore, the model highlights
howHCV2 individuals, who are external to themarket for DAAs, may still
be affected by their introduction. That is, while the health of HCV2 indi-
viduals is not directly affected by DAAs, transplant offers change because
of the direct health effects to HCV1 individuals, and changes in trans-
plant offers change HCV2 listing behavior.
Our data are well suited to capture these changes. In what follows, we

document raw trends in liver transplants and waiting list additions. We
also describe changes in the health composition of the liver transplant
waiting list by examining trends in MELD scores, time from listing to
transplant, and waiting list exits due to condition improvement or death.
Finally, our data also allow us to investigate an unmodeled, but potentially
important, dynamic in the willingness of waiting list registrants to accept
an HCV1 liver for transplant. DAA availability may result in an increase
in the supply of donors and shift candidate preferences such that HCV1

livers become more attractive, which would affect the number of livers
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available for transplant. The implication of such a change would be to
increase liver offers, allowing for greater selectivity among transplant
candidates. Following our presentation of the raw data, we present plau-
sibly causal evidence on the comparative dynamics suggested by our
theory from a research design in which we compare trends in liver trans-
plant waiting list behavior and transplant outcomes to similar trends for
kidneys.

III. Data and Descriptive Trends

A. Data Description and Summary Statistics

We use data from the Scientific Registry of Transplant Recipients (SRTR)
from 2005 to 2019.4 SRTR collects individual-level data on the universe of
organ transplant waiting list registrants, donors, and transplant recipients
from the United Network for Organ Sharing (Wright 2022).5 Using the
SRTR data, we can calculate changes to the extensive margin of the liver
transplant waiting list, including the number of registrants currently wait-
listed and the number of those added and removed from the waiting
list. We can also observe waiting list registrant characteristics including
age, sex, race, ethnicity, source of insurance coverage, and the donation
service area (DSA) where each registrant wait-lists.6 In addition, the data
allow us to track the severity of registrants’ liver disease through their
MELD score, where a higher score indicates a higher mortality risk.
Throughout the analysis, we exclude individuals younger than 18 years
at time of wait-listing or receiving a transplant since minors face differ-
ent allocation rules and procedures than adults.

4 The SRTR data system includes data on all donors, waiting list registrants, and trans-
plant recipients in the United States, submitted by the members of the Organ Procure-
ment and Transplantation Network (OPTN). The Health Resources and Services Admin-
istration of the US Department of Health and Human Services provides oversight to the
activities of the OPTN and SRTR contractors.

5 A small number of people receive a liver transplant without being wait-listed. Our
transplant measure includes those receiving a transplant whether they are wait-listed or
not.

6 Because of changes over time in the existence and services of certain DSAs, we use
modified DSA identifiers throughout our analyses and proceed in three steps. First, we
combine the Sierra Donor Services DSA into the Donor Network West DSA in California
since Sierra Donor Services ended their liver program in 2008/09 and was geographically
entirely surrounded by Donor Network West. Second, the Mississippi Organ Recovery
Agency began operating in 2013, so we combine that DSA with its preexisting contiguous
DSAs in Tennessee and north Mississippi, Louisiana, and Alabama. Third, because Lifelink
of Southwest Florida ended in 2004, OurLegacy in Florida started in 2007, and Lifelink
Puerto Rico started in 2012, we combine all Florida and Puerto Rico DSAs into one DSA
unit.
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While the SRTR data do not allow us to observe HCV status at the time
of waiting list registration, they do include HCV status determined by an
antibody test for those receiving a transplant. We use this information to
infer the HCV status of waiting list registrants by examining the preva-
lence of primary diagnosis codes commonly found among HCV1 but
not HCV2 liver transplant recipients, and vice versa. For example, 59%
of HCV1 transplant recipients have a diagnosis of “cirrhosis: type C”
(SRTR code 4204) compared to only 2.2% of HCV2 recipients. Similarly,
“alcoholic cirrhosis with hepatitis C” (SRTR code 4216) is observed in
13.3% of HCV1 transplant recipients and only 0.6% of HCV2 recipients.
Conversely, “cirrhosis: fatty liver (NASH)” (SRTR code 4214) is found
among 14.3% of HCV2 transplant recipients compared to only 0.6% of
HCV1 recipients. Likewise, “alcoholic cirrhosis” (SRTR code 4215) is pres-
ent in 26.7% of HCV2 transplant recipients and only 3.5% of HCV1 recip-
ients. We take a conservative approach and classify a diagnosis code as
HCV related if its rate of occurrence among HCV1 transplant recipients
is at least 4 times greater than its rate of occurrence among HCV2 recipi-
ents, and vice versa. After assigning registrants based on their primary di-
agnosis codes, we identify additional HCV1 waiting list registrants using
an optional diagnosis text description field. The strings in this descrip-
tion field include terms such as “HCV,” “Hepatitis C,” “Hep C,” as well
as variations that may include periods, dashes, slashes, or minor typos.7

Although we know the actual HCV status of transplant recipients, for
consistency, we use inferred status in all regression analyses. In practice,
our estimates using inferredHCV status are likely to be conservative, since
we expect that misidentifying some HCV1 individuals as HCV2 and vice
versa would bias our estimates toward zero.8 Also, sinceHCVantibodies re-
main even after achieving viral clearance, we are able to useHCVantibody
status at time of transplant to assess whether our HCV2 classification
might capture those with a curedHCV infection, thus potentially overstat-
ing DAA-associated changes in HCV2 wait-listing. We find no evidence of
this. For example, in 2014, 99 (3.2%) of the 3,128 liver transplant recipi-
ents that we categorized as HCV2 based on diagnosis codes tested positive
for HCV antibodies at the time of transplant, compared to 206 (3.3%) of
the 6,180 liver transplant recipients categorized as HCV2 in 2019. For ap-
proximately 15% of waiting list registrants, neither the diagnosis code nor
the text description allow us to assign an HCV status, so we exclude those
individuals from our analyses.

7 Using this approach, 1,804 additional registrants (roughly 120 per year) can be flagged
as HCV1 relative to the 93,547 registrants (roughly 6,236 per year) who are identified as
HCV1 or HCV2 using only their diagnosis code.

8 For example, our coefficient estimate of the effect of DAA availability on transplants to
HCV2 recipients is 0.31 log points using inferred HCV status versus 0.37 log points when
using actual HCV antibody status.
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Table 1 presents descriptive statistics for liver transplant waiting list
registrants by HCV status and over time. Waiting list registrations among
HCV1 individuals with ESLD dropped from an average of 3,896 per year
(35,068 total) over the 9 pre-DAA years in our sample to an average of
2,405 per year (14,431 total) across the 6 post-DAA years. The number
of waiting list removals and transplants among HCV1 registrants also
dropped after DAAs became available, from 4,017 per year (36,157 total)
to 2,984 per year (17,901 total). In contrast, yearly waiting list registra-
tions, removals, and transplants increased among HCV2 individuals with

TABLE 1
Liver Registrants’ Summary Statistics, by HCV Status

HCV1 Liver Registrants HCV2 Liver Registrants

2005–
19

2005–
13

2014–
19

2005–
19

2005–
13

2014–
19

Totals:
National number of listings 49,499 35,068 14,431 93,542 46,719 46,823
National number of waiting list
removals and transplants 54,058 36,157 17,901 93,123 46,470 46,653

Waiting list flows (counts):
National yearly number of listings 3,300 3,896 2,405 6,236 5,191 7,804
National yearly number of waiting
list removals and transplants 3,604 4,017 2,984 6,208 5,163 7,776

Waiting list outcomes (means):
Too sick or died .257 .269 .235 .226 .240 .213
Improved .048 .032 .079 .067 .066 .069
Deceased donor transplant .511 .511 .511 .535 .510 .559
Living donor transplant .014 .015 .014 .027 .024 .031
Days to transplant 316.7 302.1 346.1 228.1 241.5 215.9

Waiting list characteristics (means):
Initial MELD 16.47 16.60 16.15 19.67 19.18 20.15
High school or less .582 .576 .593 .448 .470 .429
White percentage .680 .691 .654 .731 .736 .725
Primary payer: private .549 .584 .464 .609 .642 .576
Primary payer: Medicare .251 .226 .311 .236 .217 .255
Primary payer: Medicaid .200 .190 .225 .155 .141 .170
Listing age 18–39 .022 .024 .019 .135 .139 .131
Listing age 40–64 .873 .906 .792 .694 .713 .675
Listing age over 64 .105 .070 .189 .171 .148 .194
South census region .372 .359 .405 .379 .361 .397
Northeast census region .220 .228 .199 .186 .195 .177
Midwest census region .170 .170 .170 .231 .236 .226
West census region .238 .243 .226 .204 .208 .201

Note.—Authors’ calculations of fraction of liver registrants belonging to each character-
istic or outcome group from SRTR data. Except for waiting list outcomes (too sick or died,
improved, transplants, and days to transplant), which are calculated on the basis of the tim-
ing of waiting list removal, all summary statistics are calculated on the basis of when the
registrants joined the waiting list. Those for whom HCV status cannot be inferred are ex-
cluded from the calculations in this table. This amounts to roughly 15% of liver registrants,
or 24,847 of 167,888 total liver registrants who listed between 2005 and 2019. Higher
MELD score reflects higher mortality risk.
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ESLD, going from 5,191 to 7,804 average yearly listings, and from 5,163
to 7,776 average yearly removals and transplants. The most common out-
come of the wait-listing process is a transplant from a deceased donor,
followed by removal from the waiting list due to condition deterioration
or death. For bothHCV1 andHCV2 registrants, the probability of removal
due to condition deterioration or death fell in the period following
DAA availability, while removal due to condition improvement increased.
MELD scores indicate that, on average, HCV2 registrants face a higher
mortality risk than HCV1 registrants. Due in part to the lower average
MELD score for HCV1 registrants, the time from listing to transplant is
longer for those with HCV. The descriptive statistics indicate an in-
crease in time to transplant in the DAA era forHCV1 registrants and a de-
crease for HCV2 registrants. The majority of waiting list registrants are
privately insured, between the ages of 40 and 64, and live in the South cen-
sus region.

B. Trends in Equilibrium Transplants and Liver Demand

Figure 1 shows the equilibrium number of liver transplants over our sam-
ple period, both overall and by HCV status. We see a clear trend break
following the introduction of DAAs, as the total number of liver trans-
plants increased from 6,190 in 2014 to 8,330 in 2019. This total increase

FIG. 1.—Authors’ calculations of yearly national counts using SRTR data.
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in transplants reflects both a significant reduction in transplants to HCV1

individuals (solid line) and a significant increase in transplants to HCV2

individuals (long-dashed line). To quantify changes in raw trends, we esti-
mate a series of comparative interrupted time series (CITS)models. CITS
is a more general form of the difference-in-differences design in which
each group is compared to its own baseline trend rather than to a counter-
factual generated by an untreated group, and is appropriate in this case
because, consistent with our behavioral model above, both HCV1 and
HCV2 waiting list registrants are potentially affected by the development
of DAAs. We stress that this exercise is meant to be descriptive in nature;
we do not interpret CITS estimates as causal effects, but they serve as use-
ful benchmarks to which we will compare difference-in-differences esti-
mates in later sections. A description of the CITS specification, as well
as the full set of CITS results, can be found in appendix section 1 and ap-
pendix table 1 (the appendix and app. tables 1–7 are available online).9

From 2014 to 2019, the number of HCV2 liver transplant recipients in-
creased by an average of 53.6% relative to their baseline trend, while the
number of HCV1 individuals receiving a transplant decreased by an aver-
age of 55.7%. Before 2014, approximately 30% of HCV1 and HCV2 wait-
ing list registrants received a liver transplant each year, and the trends in
this outcome were flat for both groups; by 2019, the share of HCV2 regis-
trants who exited the waiting list because they received a transplant stood
at nearly 65%.10

Conceptually, changes in equilibrium transplants shown in figure 1 re-
flect changes in both the demand and the supply of livers. In section IV.C,
we return to the issue of how DAAsmay have changed the supply of livers,
but our primary statistical and econometric exercises focus on demand-
side effects. To study the role of these effects on equilibrium levels of trans-
plants, we begin by documenting trends in waiting list additions and
removals. Figure 2A presents trends in the number of liver transplant wait-
ing list registrants, both overall and by HCV status. Between 2005 and
2012, both the size andHCV composition of the waiting list were relatively
flat and stable. From 2013 to 2019, the total waiting list count fell from
16,738 to 13,911 registrants, and the composition of thewaiting list shifted
toward HCV2 registrants. Changes in waiting list size could be driven by
the changes in transplant volume documented in figure 1, but they could
also result from changes in the flow of patients to the list. Indeed, because
figure 2A shows a decline in the size of the list, our model predicts that
marginal ESLD patients will be induced to join the list. Figure 2B shows

9 When interpreting the magnitudes of the changes implied by the coefficient estimates
from logged outcome models, we use the following calculation: % Δ 5 100�(eestimate 2 1).

10 We present trends in transplant rates in app. fig. 2 (app. figs. 1–7 are available online).
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that following the introduction of DAAs, waiting list additions for HCV1

registrants sharply declined, while additions forHCV2 registrants increased.
The estimates fromourCITSmodels indicate an average increase in waiting
list additions of 22.6% from 2014 to 2019 for HCV2 registrants and an aver-
age decrease of 51.4% forHCV1 registrants relative to each group’s baseline
mean.
In addition to changes in transplants, the change in the health com-

position of the waiting list is also important because it potentially affects
the value of the average transplant in terms of graft survival. To examine
changes in the health composition of the waiting list, figure 3A shows the
average last MELD score prior to transplant for both HCV2 and HCV1

waiting list registrants. Average MELD scores at transplant were rising
(i.e., worsening health) for both HCV1 and HCV2 registrants between
2005 and 2013. HCV1 registrants saw steep declines in average MELD
scores at transplant coinciding with the introduction of DAAs, while the
growth rate in average MELD score at transplant for HCV2 registrants fell
at a slower rate. Evidence in figure 3A could reflect a selection of healthier
patients on the waiting list, or it could reflect shorter waiting times from
listing to transplant. In figure 3B, we present themean initial MELD score
upon listing for both HCV2 and HCV1 waiting list registrants. The mean
initial MELD score for HCV2 registrants rises slightly through the intro-
duction of DAAs, whereas it falls from roughly 17 to 15 for HCV1 patients.
For both transplant and listing, we present CITS estimates of changes
in MELD scores associated with the introduction of DAAs in appendix
table 2. These results are consistent with health improvements for both
HCV1 and HCV2 patients at the time of transplant and for HCV1 patients
at the time of listing.11

FIG. 2.—Liver waiting list levels and inflows. Authors’ calculations of yearly national
counts and rates using SRTR data.

11 We also track trends in waiting list attrition due to condition deterioration/death and
condition improvement before and after the introduction of DAAs. The likelihood of leav-
ing the waiting list because of deteriorated condition or death was increasing for both
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There are several key takeaways from the patterns we observe in trans-
plant, wait-listing behaviors, and the health composition of liver waiting
list registrants. We document an increase in the number of liver trans-
plants following the introduction of DAAs that is driven entirely by
HCV2 recipients. We also see significant reductions in both the number
of HCV1 waiting list registrants and transplants toHCV1 recipients. These
patterns highlight the extent of the positive externalities of DAA develop-
ment that have accrued to HCV2 individuals with ESLD. Namely, reduced
demand for livers from HCV1 individuals has resulted in greater organ
availability for HCV2 individuals. Therefore, we conclude that the post-
DAA growth in HCV2 liver waiting list registrants is primarily a function
of marginal candidates entering the waiting list (i.e., individuals who
likely would not have wait-listed in the absence of DAA-induced changes
to the value of listing). This interpretation is supported by higher post-
DAAMELD scores at the time of listing for HCV2 registrants and by prior
research that has found that fewer than half of those who met the clinical
guidelines to join the liver transplant waiting list actually did prior toDAAs
(Bryce et al. 2009, 2010; Goldberg et al. 2016; Jesse et al. 2019). Further,
HCV2 waiting list registrants were more likely to suffer from ALD in the
post-DAA period and those with ALD comprised the bulk of new waiting
list additions (see CITS evidence by diagnosis category in app. table 4). Ev-
idence indicates that physicians are less likely to refer ALD patients to the
waiting list relative to other diagnosis categories and that pre-DAA rates of
liver transplant wait-listing among those with ALDwere as low as 5% (Leong

FIG. 3.—Change in health composition. Authors’ calculations of average MELD scores
using SRTR data. Note that a higher MELD score reflects higher mortality risk. Roughly
20% of registrants have the same initial and last MELD score.

groups through 2013 before declining once DAAs became available (app. fig. 1a; app. table 3).
HCV2 registrants were consistently more likely to leave the waiting list due to condition
improvement compared to HCV1 registrants in the pre-DAA period, but this relationship re-
versed shortly after the introduction of DAAs (app. fig. 1b; app. table 3).

778 journal of political economy microeconomics



and Im 2012). Finally, lower average MELD scores for HCV2 recipients at
the time of transplant, likely due to shorter times fromwait-listing to trans-
plant (see app. fig. 7; app. table 5), have implications for graft survival and
the benefits associated with transplant. We return to this point later in our
discussion of the value of the innovation-induced externalities generated
by DAAs in section V.

IV. Research Design: Comparing Trends in Livers
and Kidneys

While trend estimates imply substantial gains to HCV2 individuals with
ESLD associated with the timing of DAA introduction, the lack of a com-
parison group that is unaffected by the availability of DAAs could limit
our ability to address potential sources of confounding. For example,
a supply shock to the liver transplant waiting list concurrent with the
introduction of DAAs is the increase in the availability of transplantable
organs associated with the rising number of drug overdose deaths (see
app. fig. 4). From 2014 to 2019, drug overdose deaths from synthetic
opioids, including fentanyl, increased by an average of 58% per year
compared to an average increase of 12% per year between 2005 and
2013, leading to an estimated 25,000-plus additional organ transplants
(Dickert-Conlin et al. 2024). Similarly, the Affordable Care Act’s Medic-
aid expansions, which 26 states and Washington, DC, adopted in 2014,
led to increased organ waiting list registrations (Lemont 2023). CITS
models are unable to distinguish between concurrent shocks, and thus re-
turn the combined effect of DAAs and drug overdose deaths or health in-
surance gains on changes in transplant and waiting list registration.
To separately identify the impact of DAAs from concurrent shocks, we

estimate a traditional difference-in-differences (DiD) design that com-
pares equilibrium liver transplants and liver demand (i.e., waiting list ad-
ditions) for bothHCV1 andHCV2 individuals to similar outcomes and be-
haviors for end-stage renal disease (ESRD) patients before and after the
introduction of DAAs. To the extent that secular trends in the supply or
demand for transplantable organs are reflected similarly among HCV2

liver waiting list registrants and those on the kidney waiting list, the DiD
strategy will improve our ability to isolate the reallocation effects of DAAs
on the listing behaviors and outcomes for HCV2 registrants and estimate
the value of the innovation-induced externality. For example, Dickert-
Conlin et al. (2024) show that the opioid epidemic has led to a large
increase in the supply of transplantable organs. However, since themagni-
tude of this supply shock was similar for livers and kidneys, our DiDmod-
els should difference out the influence of overdose deaths, allowing us
to isolate the effect of DAAs. Similarly, Lemont (2023) shows that Med-
icaid expansion was associated with comparable increases in both liver
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and kidney waiting list registrations (34% for livers and 38% for kidneys)
and transplants (40% for livers and 50% for kidneys) for Medicaid
beneficiaries.12

Data on equilibrium kidney transplants and waiting list additions also
come from SRTR, and appendix table 6 provides descriptive statistics for
these data.13 For a comparison of liver and kidney trends to produce
credible causal estimates of the effect of DAA availability on transplants
and listing behaviors for HCV2 individuals with ESLD, baseline differ-
ences in outcomes between liver and kidney transplant recipients and
waiting list registrants must remain stable over time in the absence of
DAAs. While this parallel trend assumption is not directly testable, we
provide suggestive evidence that it holds by plotting trends in equilib-
rium kidney and liver transplants and waiting list inflows in figure 4. Be-
cause of the large level differences between liver and kidney transplants
and waiting list registrations, we plot log trends in figure 4 and use log
outcomes in our DiD regression models. Trends in kidney transplants
(fig. 4A) and waiting list additions (fig. 4B) track closely with trends in
liver transplant and waiting list additions through 2013, providing no in-
dication of a violation of the parallel trends assumption.
We estimate the following DiD specification separately for HCV1 and

HCV2 liver transplant recipients and waiting list registrants using kidney
transplant recipients and waiting list registrants as controls:14

Ydlt 5 b½1(l 5 liver) � DAAt � 1 gdl 1 ht 1 edlt , (1)

where Ydlt is the outcome for DSA d, organ l ∈ fliver, kidneyg, in year t.
The treatment effect of interest is b, which is the coefficient on the inter-
action between the indicator for liver (i.e., treated) or kidney (i.e., con-
trol) transplant recipient/waiting list registrant and DAAt, the indicator
for the post-DAA period (2014–19). Finally, we include DSA-by-organ
fixed effects gdl, year fixed effects ht, and an idiosyncratic error term edlt
clustered at the DSA-by-organ level.
Table 2 contains our DiD estimates of the effects of DAA availability on

liver transplants (cols. 1 and 2) and liver transplant waiting list additions

12 In a subsample of states yet to expand Medicaid by 2019, estimates of DAA effects on
transplants and wait-listing behavior were similar to those from our full sample and are
available upon request.

13 We exclude knownHCV1 kidney transplant waiting list registrants based on optionally
provided diagnosis text from our control group in all analyses, which amounts to only 0.13%
of all kidney candidates from 2005 to 2019. For reference, HCV1 kidney transplant recip-
ients account for fewer than 5% of all recipients in our data based on antibody tests at the
time of transplant. Because five kidney DSAs do not have a liver program, our sample in-
cludes 50 modified DSA identifiers for kidneys and 45 modified DSA identifiers for livers.

14 We primarily report OLS estimates using logged outcomes throughout the paper. We
also estimated Poisson regressions that generated virtually identical results that are avail-
able upon request.
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(col. 3) for HCV2 individuals (panel A) and HCV1 individuals (panel B).
The estimates in columns 1 and 3 are from models in which the depen-
dent variables are measured in logs, while the estimate in column 2 is
from a model in which the dependent variable is defined as a fraction
of the HCV-specific number of registrants on the waiting list (i.e., the
transplant rate). Thus, estimates in column 2 effectively remove the in-
fluence of DAA-induced changes to waiting list inflows and outflows
and provide an indication of how DAAs impacted transplants condi-
tional on wait-listing.
Table 2, column 1, presents transplant estimates and underscores the

substantial externality accruing to HCV2 individuals with ESLD seeking
transplant as a result of DAA availability. Average annual liver transplants
for HCV2 recipients increased by 100�(e0:3059 2 1) 5 35:8% relative to
changes in kidney transplants from 2014 through 2019. Estimates in
panel B clearly show that the gains to HCV2 transplant recipients came
from the reallocation of transplantable livers from HCV1 individuals
who no longer needed a transplant. We estimate that DAAs reduced av-
erage annual liver transplants for HCV1 individuals by 39.1% relative to
kidney transplants.
Estimates of DAA-induced changes in HCV-specific transplant rates in

table 2, column 2, indicate that transplants to HCV2 recipients increased
relative to the number of HCV2 waiting list registrants (16.0 percentage
points, 31.6%). In other words, DAA-induced transplant gains to HCV2

recipients were (proportionally) larger than the net overall growth in
waiting list additions, suggesting that HCV2 waiting list registrants were
receiving more frequent and/or earlier liver offers. Consistent with this
interpretation, we show in appendix figure 7 and appendix table 5 that
the time to transplant for HCV2 patients declined by 16% following the

FIG. 4.—Liver versus kidney waiting list inflows and outflows. Authors’ calculations of
yearly national log counts using SRTR data. This figure adds the kidney registrant compar-
ison group and recalculates the trends in terms of deviations from 2012. We exclude the
0.13% of kidney registrants who are known to have an HCV-related diagnosis using the op-
tional diagnosis text field in the data.
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introduction of DAAs. The transplant rate estimate for HCV1 registrants
in panel B, column 2, is positive (5.8 percentage points, 11.4%) and, while
not statistically significant at conventional levels, suggests that DAAs con-
ferred modest benefits to HCV1 individuals who remained on the waiting
list. We interpret this finding as evidence that the large, estimated reduc-
tion in transplants to HCV1 recipients in panel B, column 1, was driven
entirely by the reduction in transplant demand from HCV1 individuals
who were cured by DAA treatment.
Estimates of the effect of DAAs on liver transplant waiting list additions

are presented in table 2, column 3. DAAs increasedHCV2 liver waiting list
additions by an average of 36.8% relative to kidney waiting list additions
from 2014 through 2019 and decreased HCV1 liver waiting list additions
by an average of 45.4%.15

We also estimate a time-disaggregated (i.e., event study) version of our
DiD specification:

Ydlt 5 o
2019

k52005

bk ½1(l 5 liver) � 1(t 5 k)� 1 gdl 1 ht 1 edlt , (2)

TABLE 2
Liver versus Kidney Waiting List Additions and Transplants

Log Transplant Transplant Rate Log Waiting List Additions
(1) (2) (3)

A. HCV2

Liver � DAA .3059*** .1604*** .3134***
(.0514) (.0407) (.0545)

Baseline mean 61.27 .507 115.36
Observations 1,425 1,425 1,425
Number of clusters 95 95 95

B. HCV1

Liver � DAA 2.4965*** .0576 2.6044***
(.0578) (.0392) (.0601)

Baseline mean 46.89 .506 86.59
Observations 1,425 1,425 1,425
Number of clusters 95 95 95

Note.—Columns 1 and 3 of coefficients represent log point changes per year, which can
be transformed into percentages using the formula 100�(e b̂ 2 1). In col. 2, the outcome is
defined as the number of transplants divided by the organ-specific number of waiting list
registrants. Baseline means reflect the pretreatment period (2005–13) DSA-year means for
liver registrants only. In cols. 1 and 3, baseline means reflect level counts rather than log
counts. While there are 57 DSAs in the United States, we use modified DSA identifiers
(see footnote 13) due to changes in DSA existence and services over time, which yields
50 kidney-serving DSA and 45 liver-serving DSA identifiers. Standard errors are in paren-
theses and are clustered at the DSA-by-organ level.
*** p < .01.

15 Our regression results are economically similar when we restrict our sample by drop-
ping those patients observed to ever list for both a liver and a kidney.
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where the vector of the coefficient estimates, bk, reflects the time-specific
differences in outcomes between liver and kidney waiting list registrants
and transplant recipients. We specify the baseline period as 2012 in our
event study models so that we can detect any potential anticipatory ef-
fects occurring in 2013 as DAAs became available in December of that
year. These estimates allow us to investigate whether there were any dif-
ferential preintervention trends between liver and kidney transplant
recipients and waiting list registrants as well as the dynamics of the treat-
ment effects across the posttreatment periods.
Figure 5 presents event study estimates that correspond to the DiD

transplant and wait-listing estimates in table 2 (see app. fig. 3 for trans-
plant rate event studies). Relative to kidney transplants and waiting list
additions, figure 5A shows a clear decline in liver transplants to HCV1

recipients, and figure 5B shows a clear decline in liver waiting list ad-
ditions from HCV1 individuals. In both cases, trends in the pre-DAA
period were flat, with annual estimates growing monotonically over time

FIG. 5.—Liver versus kidney waiting list additions and transplants, log counts. Each
panel presents time-disaggregated DiD estimates, comparing HCV-specific liver waiting list
transplants and waiting list additions to kidney transplants and waiting list additions. The
outcomes in each are log counts, implying that the coefficients can be transformed into
percentage changes relative to the omitted baseline period (2012) using the formula
100�(e b̂k 2 1). The bars around each coefficient reflect the 95% confidence interval using
standard errors clustered at the DSA-by-organ level.
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from 2013/14. Results are a mirror image for HCV2 individuals; both
liver transplants (fig. 5C) and liver waiting list additions monotonically
increase (fig. 5D), with little evidence of differential pretrends. Our event
study estimates imply that DAAs led to an additional 1,648 HCV2 people
joining the liver transplant waiting list per year, on average, or 9,888 total
HCV2 additions to the liver transplant waiting list from 2014 to 2019.
On average, DAAs reduced HCV1 liver transplant waiting list additions by
1,616 people each year for a total of 9,693 fewer HCV1 additions to the liver
transplant waiting list from 2014 to 2019.
Finally, we conduct a heterogeneity analysis that allows the effect of

DAAs on transplants and wait-listing forHCV2 patients to vary by baseline
DSA HCV prevalence. Technically, the regression specification is a triple
differences strategy in which we compare liver transplant recipients and
waiting list registrants to kidney recipients/registrants and allow that
comparison to vary by the baseline share of DSA transplant recipients
testing positive for HCV. The intuition behind this approach is that the
demand response to DAA availability from HCV1 individuals with ESLD
should be larger in areas with greater HCV prevalence, freeing more liv-
ers for transplant to HCV2 recipients listing in these areas. Table 3 pre-
sents these results for waiting list additions (panel A) and log transplants
(panel B). Column 1 of table 3, which we label the dose-response effect,
shows clearly that both waiting list additions and transplants are increas-
ing in the fraction of DSA transplant recipients with HCV. For every 10-
percentage-point increase in baseline transplant recipient HCV share,
the effect of DAAs on HCV2 wait-listing and transplant increases by 13.7%
and 13.1%, respectively. In columns 2 and 3 of table 3, we split our sample
by baseline HCV rate and repeat our standard DiD analysis from equa-
tion (1). Again, the evidence suggests a strong dose response; our esti-
mates of the impact of DAAs on both HCV2 waiting list additions and
transplants are significantly larger in the subsample ofDSAs that are above
the baseline HCV rate median.
We now discuss the robustness of our model in four categories: con-

current shocks, DAA spillovers to kidney transplants, organ supply changes,
and reconciling CITS and DiD estimates.

A. Concurrent Shocks

Our conceptual model suggests that the value of wait-listing for HCV2

individuals increases when the number of HCV1 waiting list registrants
falls, and so we expect to see increased HCV2 wait-listing following the in-
troduction of DAAs.16 However, a competing explanation for the observed

16 The idea is that marginal HCV2 individuals are induced to join the waiting list due to
the increased likelihood of a transplant associated with DAA availability and because of a
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pattern inHCV2wait-listing in table 2 would be concurrent changes in the
prevalence of non-HCV conditions leading to ESLD. To distinguish be-
tween these explanations, we first estimate changes in waiting list addi-
tions by leadingnon-HCVdisease indicators for wait-listing includingnon-
alcoholic steatohepatitis (NASH) and alcohol liver disease (ALD).17 These

TABLE 3
Heterogeneity among HCV

2
Individuals by Fraction of Transplant Recipients

with HCV Antibodies

Dose-Response
Effect

≥ Median HCV1

Rate
< Median HCV1

Rate
(1) (2) (3)

A. Log Waiting List Additions

Liver � DAA 2.2709 .3547*** .2086**
(.2757) (.0635) (.0836)

Liver � DAA � fraction HCV1 1.2829**
(.6069)

Mean of dependent variable
(level) 115.36 145.53 83.81

B. Log Transplants

Liver � DAA 2.2478 .3649*** .2109***
(.2860) (.0694) (.0697)

Liver � DAA � fraction HCV1 1.2347*
(.6584)

Mean of dependent variable
(level) 61.27 71.52 50.56

C. Observations and Number of Clusters

Observations 1,350 690 660
Number of clusters 90 46 44

Note.—This table presents difference-in-differences heterogeneity estimates, compar-
ing log HCV2 liver transplants and waiting list additions to log kidney transplants and wait-
ing list additions, by DSAs’ fraction of pretreatment (2005–13) liver transplant recipients
who tested positive for antibodies to HCV. The baseline means of the dependent variables
reflect level counts (at the DSA-year level) rather than log counts during the pretreatment
period (2005–13) for liver registrants only. While there are 57 DSAs in the United States,
we use modified DSA identifiers (see footnote 13) because of changes in DSA existence
and services over time, which yields 50 kidney-serving DSA and 45 liver-serving DSA iden-
tifiers. Standard errors are in parentheses, and clustered at the DSA-by-organ level.
* p < .10.
** p < .05.
*** p < .01.

reduced time from listing to transplant. Appendix fig. 7 plots trends in time from wait list-
ing to transplant for HCV2 recipients and shows a steep decline following the introduction
of DAAs. Estimates in app. table 5 indicate that the time from wait-listing to liver transplant
fell by 16.0%, on average, for HCV2 liver waiting list registrants compared to kidney waiting
list registrants following the introduction of DAAs.

17 An individual in our sample was considered to have NASH/ALD when NASH/ALD
was listed as a primary diagnosis or when hepatocellular carcinoma was listed as a primary
diagnosis with a secondary diagnosis of NASH/ALD.
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estimates are included in appendix table 4 and indicate thatHCV2waiting
list additions following DAAs are being driven by individuals with ALD.
Second, we use data from the NHANES to track ALD prevalence rates
among adults in the United States using established guidelines for identi-
fying ALD (Younossie et al. 2011). Appendix figure 5 plots the prevalence
of ALD throughout our sample period, indicating a small uptick in 2015/
16 followed by a return to pre-DAA levels by 2017/18.18 So, while post-DAA
additions to the liver transplant waiting list were predominantly driven by
HCV2 registrants with ALD, this appears to be a compositional change
that aligns with our discussion of DAA-induced wait-listing for “marginal”
registrants in section III.B.

B. DAA Spillovers to Kidney Transplants

Another consideration of using characteristics of kidney transplant recip-
ients and waiting list registrants to generate the counterfactual for our
DiD models is that DAA effects may spill over to individuals with ESRD.
This can happen in several ways. First, the availability of DAAsmay increase
the willingness of kidney transplant waiting list registrants to accept an
HCV1 organ. Second, individuals who are cured of HCV may become or-
gan donors.19 Third, those cured ofHCVmay become less likely to develop
ESRD and join the kidney waiting list,20 or if they already have ESRD, they
may become healthy enough for a kidney transplant.
In appendix figure 6, we assess each of these potential spillover path-

ways through which DAAs could induce changes in the supply or demand
for transplantable kidneys. Appendix figure 6A shows a clear increase in
the willingness of both kidney and HCV2 liver transplant waiting list reg-
istrants to accept an HCV1 organ. We take this as evidence of a similar de-
mand response among kidney waiting list registrants to the availability of
DAAs. Therefore, our DiD estimates will isolate the decreased demand for
transplantable livers associated with DAAs for HCV1 registrants and its ef-
fect on HCV2 individuals, excluding gains associated with increased will-
ingness to accept anHCV1 liver. As a result, ourDiD analyses will represent
lower-bound estimates of DAA-induced externalities. Appendix figure 6B
examines whether DAAs affected the supply of kidneys available for trans-
plant in the case where those newly cured of HCV became living kidney

18 We cannot include NHANES data for 2019 in our ALD prevalence rate estimates as
the 2019/20 NHANES data collection was halted due to COVID-19.

19 Using a simulation model and data from the United Kingdom, Jena et al. (2019) es-
timate that curing 240,000 cases of HCV and then implementing universal screening and
treatment would lead to an additional 127 kidney transplants per year.

20 This is because HCV potentially increases the risk for developing ESRD (Lee et al.
2014).
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donors. Since HCV status is determined through an antibody test and
antibodies remain even after achieving viral clearance, we can examine
whether the number of living kidney donors with HCV antibodies in-
creased following the availability of DAAs. The figure indicates a slight in-
crease in donors with HCVantibodies from 2012 to 2013, just before DAA
availability. However, the magnitude of this increase is quite small, repre-
senting approximately 20 additional living donors with HCV antibodies
per year, or about 0.3% of all living donors. Appendix figures 6C and
6D plot the log number of HCV1 transplant recipients and the share of re-
cipients who are HCV1 for both livers and kidneys. If DAAs impacted de-
mand for kidneys through improved health for those with ESRD, we
would expect to see fewer HCV1 kidney transplant recipients (similar to
the effects for HCV1 liver transplants). Instead, we see an uptick in the
number of HCV1 kidney transplant recipients in appendix figure 6C
and no discernible change in the share of kidney transplant recipients
who are HCV1 from 2013 to 2019 in appendix figure 6D.
Finally, while the descriptive evidence in appendix figure 6A indicat-

ing an increased willingness to accept an HCV1 liver is consistent with
predictions from our conceptual model, the model developed in How-
ard (2002) also predicts that waiting list registrants will become more se-
lective when demand from HCV1 individuals falls and liver offers in-
crease. We assess changing selectivity by estimating the effect of DAAs
on livers discarded due to “poor quality” in appendix table 7.21 Overall,
the average annual number of livers discarded due to poor quality rose
by 14.7% from 2014 through 2019 compared to kidneys (col. 1) and the
fraction of livers discarded increased by 2.4 percentage points (16%;
col. 2). Alternatively, estimates in column 3 of appendix table 7 show that
there was no relative increase in the share of HCV1 livers discarded due
to poor quality following DAA availability. We interpret these results as
suggestive evidence that transplant candidates became more selective af-
ter DAAs became available, but that HCV status was no longer viewed as a
marker of poor organ quality.

21 We define a discard as being due to “poor quality” based on disposition and discard
codes in the SRTR deceased donor disposition file. One example is where authorization
to recover an organ was not requested because of reason codes “Acute/Chronic Renal Fail-
ure” or “DonorQuality.”Another example is where authorizationwas obtainedbut theorgan
was still not recovered because of reason codes such as “Poor Organ Function,” “Infection,”
“Positive HIV,” or “Diseased Organ.” Finally, there are cases where the organ was recovered
for transplant but discarded because of reason codes such as “Too Old on Pump,” “Vascular
Damage,” “Donor Medical History,” “Warm Ischemic Time Too Long,” “Poor Organ Func-
tion,” or “Infection.” In constructing this indicator, we do not include cases where a recipient
was not located, where the organ was refused by all programs, or with other non-donor-quality
codes such as “Other,” “Surgical Damage inOR,” “No Local Recovery Team,” or “Medical Ex-
aminer Restricted.”
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C. Organ Supply Changes

To this point, we have focused our discussion on the demand-side effects
of DAA availability, but equilibrium changes in transplants and waiting
list additions could also be a function of changes in the supply of trans-
plantable organs. Figure 6 plots the number of deceased donor livers
and kidneys recovered for transplant separately by HCV status. Figure 6A
shows a steep increase in HCV1 livers and kidneys recovered for trans-
plant beginning in 2014, which is likely driven by a combination of drug
overdose deaths (which accrue disproportionately to HCV1 individuals
[Durand et al. 2018]) and an increased willingness among waiting list
registrants to acceptHCV1 organs (see app. fig. 6A). Figure 6B showsmuch
smaller relative increases in the supply of transplantable organs recovered
fromHCV2 donors beginning in 2014. More importantly for our identifi-
cation strategy, the magnitudes of the increases in organ availability for
both HCV1 and HCV2 livers and kidneys are quite similar suggesting that
estimates from our DiD models reflect demand-side changes in response
to the introduction of DAAs.

D. Reconciling CITS and DiD Estimates

In section III.B, we discuss trends in liver transplants and waiting list in-
flows and outflows for those with and without HCV. To measure the mag-
nitude of these trends compared to the baseline (i.e., pre-DAA) means,
we use a CITS procedure, which is detailed in appendix section 1. We
then present DiD estimates that assess the effect of DAAs on transplant
and liver waiting list additions, using kidney transplant recipients and
waiting list registrants as controls. We now compare the estimates generated

FIG. 6.—Supply of HCV1 and HCV2 donor organs. Authors’ calculations of yearly na-
tional counts using SRTR data. The plots include all livers (left scale) and kidneys (right
scale) recovered for transplant, including those that are subsequently discarded. For refer-
ence, the 2005–13 average number of HCV2 kidneys recovered is 14,062; the correspond-
ing average for livers is 6,513. The 2005–13 average number of HCV1 kidneys recovered is
531; the corresponding average for livers is 237.
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by these two different techniques and briefly describe the relevance of
this exercise to our preferred identification strategy.
Table 4 contains annual estimates of the effect of DAAs on transplants

for HCV2 recipients from our CITS model (col. 1) and our DiD model
(col. 2) relative to the 2005–12 period. In every year, the CITS estimates
are larger than the DiD estimates, likely due to unobserved confounders
inflating the CITS estimates (e.g., drug overdose deaths, Medicaid ex-
pansion, increased willingness to accept HCV1 donor organs). Column 3
calculates the magnitude of the difference between the CITS and DiD

TABLE 4
CITS versus DiD Estimates of Transplants to HCV

2
Registrants

Log Transplants

HCV2 HCV2

All
Transplants

Liver
Transplants

Kidney
Transplants

CITS DiD Difference CITS CITS CITS
(1) (2) (3) (4) (5) (6)

DAA � 2013 .0960*** .0667 .0293 .0241 .0435 .0159
(.0334) (.0435) (.0190) (.0288) (.0222)

DAA � 2014 .1356*** .0846* .0510 .0587** .0844** .0417
(.0481) (.0499) (.0263) (.0381) (.0295)

DAA � 2015 .2307*** .1529*** .0778 .0895*** .1055** .0715**
(.0618) (.0563) (.0312) (.0505) (.0339)

DAA � 2016 .4750*** .3391*** .1359 .1685*** .2271*** .1335***
(.0681) (.0581) (.0386) (.0620) (.0393)

DAA � 2017 .5271*** .3457*** .1814 .2132*** .2620*** .1822***
(.0873) (.0665) (.0409) (.0744) (.0410)

DAA � 2018 .6035*** .3666*** .2369 .2569*** .2754*** .2413***
(.0945) (.0642) (.0477) (.0843) (.0466)

DAA � 2019 .7643*** .4367*** .3276 .3494*** .3553*** .3356***
(.1074) (.0656) (.0508) (.0974) (.0486)

Observations 675 1,425 750 675 750
Number
of clusters 45 95 50 45 50

Note.—The outcome variables in cols. 1 and 2 are log number of transplants received by
HCV2 registrants, where the difference is col. 1 presents time-disaggregated interrupted
time-series estimates, while col. 2 presents time-disaggregated DiD estimates comparing liver
transplants to kidney transplants. Column 3 presents the difference between the col. 1 and
col. 2 estimates for each posttreatment year. Columns 4–6 present time-disaggregated inter-
rupted time-series estimates of overall transplant trends for all registrants (both HCV2 and
HCV1). Note that all coefficients in this table represent log point changes, which can be
transformed into percentages using the formula 100�(e b̂ 2 1). While there are 57 DSAs
in the United States, we use modified DSA identifiers (see footnote 13) due to changes in
DSA existence and services over time, which yields 50 kidney-servingDSA and 45 liver-serving
DSA identifiers. Standard errors are in parentheses. They are clustered at the DSA-by-organ
level when comparing livers to kidneys (col. 2 only) and at the DSA level when estimating in-
terrupted time-series models (all other columns).
* p < .10.
** p < .05.
*** p < .01.
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estimates, and columns 4–6 contain CITS estimates of trends in trans-
plant for all organs, livers, and kidneys, respectively.
Two key takeaways from table 4 are worth noting. First, annual growths

in liver and kidney transplants are quite similar over the post-DAA period.
For example, liver transplants had increased by 42.7% (col. 5) and kidney
transplants by 39.9% (col. 6) from 2012 to 2019, indicating that trends in
the availability of livers and kidneys for transplant were similarly affected
by supply changes and willingness to acceptHCV1 organs over this period.
Second, the differences between our CITS and DiD estimates of DAA ef-
fects on transplants for HCV2 recipients in column 3 are nearly identical
to the overall growth of organ transplants in column4, suggesting that our
DiD estimates capture the externality effect of a reallocation of livers from
HCV1 to HCV2 transplant recipients, removing the influence of con-
founders. Taken together, these findings provide additional support
for our choice to use kidney transplant recipients and waiting list regis-
trants to approximate the counterfactual in our DiD model.

V. Value of Externalities

Our DiD event study estimates from table 4 indicate that from 2014
through 2019, DAAs were responsible for an additional 5,682 liver trans-
plants toHCV2 recipients. Given the large concurrent reduction inHCV1

individuals on the liver transplant waiting list, the evidencewepresent sug-
gests that these transplant gains for HCV2 recipients did not crowd out
transplants that would have otherwise gone to those whowereHCV1. Mul-
tiplying 5,682 transplants by 10.1 life years22 per liver transplant (Rana
et al. 2015) equals 57,388 life years, and assuming a 3% annual discount
rate and a value of $150,000 per life year, our DiD estimates imply that
DAAs generated $7.52 billion, or $1.25 billion per year, in value to HCV2

transplant recipients between 2014 and 2019. For context, Chhatwal et al.
(2015) estimate that providing DAAs for all HCV1 individuals in 2015 at
market prices would have cost roughly $65 billion. Recognizing that pro-
vidingDAAs to all those whowereHCV1would have generated further ex-
ternalities, our estimated innovation-induced externality value accruing
to HCV2 individuals with ESLD is roughly 11.5% of the total potential
market for DAAs in 2015.
It is also worth reiterating that this externality estimate is likely to rep-

resent a lower bound for two reasons. First, our DiD estimates do not cap-
ture additional transplants that arose due to the increased willingness to
accept anHCV1 organ onceDAAs became available, since we see a similar
increased willingness among those on the kidney transplant waiting list.

22 Jena et al. (2016) assume a more conservative 7.2 years, but this estimate does not ap-
pear in the literature.
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Second, whether through improved time from listing to transplant or
through health compositional changes in marginal registrants, we show
evidence that HCV2 transplant recipients are in better health at the time
of their transplant in the post-DAA era and this is not reflected in the
estimates of posttransplant survival that we use in our value calculation.
While a direct mapping between pretransplant MELD score and post-
transplant survival has yet to be established, evidence indicates that moving
from a pretransplant MELD score above 25 to a score below 25—consis-
tent with the pattern for HCV2 recipients following the introduction of
DAAs (see fig. 3A)—is associatedwith up to a 30% improvement in 10-year
posttransplant survival (Habib et al. 2006).
Relative to the simulation-based literature, our estimates of the value

that DAAs conferred on HCV2 individuals with ESLD are large. For ex-
ample, Jena et al. (2016) simulate an epidemiological model for 20 years
starting in 2015 and conclude that DAAs would lead to an additional
7,321 HCV2 liver transplants, or 366 transplants per year. By contrast, us-
ing actual retrospective data, we estimate an additional 947 HCV2 trans-
plants per year between 2014 and 2019, on average. The key conceptual
difference is that our economic model suggests changes in listing behav-
ior amongHCV2 patients when the size of the waiting list changes. In the
simulationmodel of Jena et al. (2016), the demand for organs fromHCV2

individuals is assumed to increase linearly until 2025 and then remain flat,
and this demand is not a function of the characteristics of the waiting list.
Our point is that consistent with the notion that listing behavior is elastic
with respect to expectations about transplant probabilities and outcomes
(Dickert-Conlin, Elder, and Teltser 2019; Agarwal et al. 2021), DAAs
shrank the waiting list, which induced marginal HCV2 patients to list,
and thesemarginal HCV2 individualsmay have contributed significantly
to the effect of DAAs on HCV2 transplants. For example, using kidney
transplant waiting list additions as a counterfactual, our estimates imply
that DAA availability resulted in an additional 9,888 HCV2 liver trans-
plant waiting list registrants from 2014 and 2019, or 1,648 additions
per year.
Accounting for the behavioral impact of DAAs on waiting list additions

is important considering the implications of our findings for the size of
the liver transplant waiting list. We estimate that, in the absence of DAAs,
6,397 HCV2 individuals with ESLD would have joined the liver transplant
waiting list in 2019.23 That same year, there were 6,182 liver transplants
performed on HCV2 recipients and, as figure 1 indicates, this number
was maintaining an upward trend in the post-DAA period. As a result,
with no DAA-induced HCV2 wait-listing response, our estimates suggest

23 The actual number of HCV2 liver transplant waiting list additions in 2019 was 9,399.
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that the development of DAAs would have effectively eliminated the liver
transplant waiting list. Instead, the gap between the number of HCV2

waiting list additions and transplants to HCV2 recipients was actually
larger in 2019 than in 2012 (the year prior to the development of DAAs).24

VI. Conclusion

We study the externalities generated by technological innovation in the
context ofHCVand liver transplantation.Our primary finding reveals that
the availability of DAAs, which were approved to treat HCV in late 2013,
generated substantial benefits for individuals outside the market for
HCV medical care: those with non-HCV-induced ESLD. Our economic
model suggests that part of the externality effect is driven by endogenous
HCV2 listing. Given the dramatic reduction in the size of the liver trans-
plant waiting list, HCV2 individuals with ESLD who may have been either
relatively healthy, perhaps attempting to forestall listing, or very sick, per-
haps rationally not expecting to receive a transplant, chose to list. Notably,
a significant fraction of these marginal listers received a transplant.
Although our estimates are conservative, as we may be undercounting

HCV cases in kidney transplantation and there may be spillovers (on top
of our controls and research design) of DAAs on the demand and supply of
kidneys, they clearly highlight the importance of considering innovation-
induced externalities when valuing technological advances. Additionally,
it is likely that we underestimate the number of DAA-induced HCV2 liver
transplant waiting list additions, and our results show larger effects when
HCV status is measured through antibody testing at the time of transplant
rather than at listing.
In sum,weprovide the first retrospective evidence on the effect of DAAs

on liver transplant and wait-listing behaviors, and, by doing so, we con-
tribute to a growing economics literature on the incentives generated
bymedical innovation.Our results are timely. InMarch of 2023, the Biden
administration proposed funding that would expand access to DAAs, with
the goal of eliminatingHCVby 2034. Using a similarmodel to that in Jena
et al. (2016), Chhatwal et al. (2023) simulated that from 2024 to 2034, in-
creased DAA access will decrease USHCV prevalence by 94% and prevent
the need for 2,500 liver transplants. Our work suggests that these 2,500
spared transplants will generate significant value for HCV2 patients in
search of a liver.

24 There were 5,440 HCV2 waiting list additions in 2012 and 2,720 transplants to HCV2

recipients (difference 5 2,720). There were 9,399 HCV2 waiting list additions in 2019 and
6,182 transplants to HCV2 recipients (difference 5 3,217).
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Data Availability

Code replicating the tables and figures in this article can be found in
Callison, Darden, and Teltser (2024) in the Harvard Dataverse, https://
doi.org/10.7910/DVN/GTGSB3.
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